Abstract
Calreticulin (CRT) is calcium binding protein of endoplasmic reticulum (ER) which performs plethora of functions besides it's role as molecular chaperone. Among the three different isoforms of this protein, CRT3 is most closely related to primitive CRT gene of higher plants. Based on their distinct structural and functional organisation, the plant CRTs have been known to contain three different domains: N, P and the C domain. The domain organisation and various biochemical characterstics of plant and animal CRTs are common with the exception of some differences. In plant calreticulin, the important N-glycosylation site(s) are replaced by the glycan chain(s) and several consensus sequences for in vitro phosphorylation by protein kinase CK2 (casein kinase-2), are also present unlike the animal calreticulin. Biotic and abiotic stresses play a significant role in bringing down the crop production. The role of various phytohormones in defense against fungal pathogens is well documented. CRT3 has been reported to play important role in protecting the plants against fungal and bacterial pathogens and in maintaining plant innate immunity. There is remarkable crosstalk between CRT mediated signalling and biotic, abiotic stress, and phytohormone mediated signalling pathways The role of CRT mediated pathway in mitigating biotic and abiotic stress can be further explored in plants so as to strategically modify it for development of stress tolerant plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.