Abstract

We investigated the role of Ca(2+)-dependent protein kinases in the regulation of astrocytic cell volume. Calmodulin (CaM) antagonists were used to inhibit CaM and thus Ca2+/CaM-dependent protein kinase. The effect of these inhibitors as well as activators and inhibitors of protein kinase C (PKC) on astrocytic volume was measured in response to hypoosmotic stress and under isoosmotic conditions. In conditions of hypoosmolarity, CaM antagonists had no effect on swelling, but inhibited the regulatory volume decrease. PKC activation facilitated the swelling induced by hypoosmotic stress. PKC inhibitors induced cell shrinkage and inhibited the initial phase of regulatory volume decrease, whereas PKC down-regulation caused pronounced swelling and partial inhibition of regulatory volume decrease. In isoosmotic conditions, CaM antagonists and PKC activation did not affect astrocytic volume, but PKC inhibitors caused shrinking and PKC down-regulation led to swelling of these cells. These studies indicate the importance of Ca(2+)-dependent protein kinases in the regulation of astrocytic cell volume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call