Abstract
It is generally accepted that microvascular permeability is controlled by intercellular endothelial cell gap size. This process is controlled in endothelial cell monolayers and peripheral blood vessels by calmodulin (CaM)-dependent myosin light-chain kinase (MLCK), which phosphorylates MLC20 with subsequent actin-myosin interaction. In the present study both CaM and MLCK blockers were studied during ischemia-reperfusion (I/R)-induced injury in isolated buffer-perfused rat lungs. The effects of a calcium ionophore (CaI) were tested in isolated intact rat lungs to compare the effects of increasing intracellular Ca2+ to I/R-induced damage. Because protein kinase C (PKC) could also be a mediator of I/R injury, a PKC inhibitor was studied in lungs subjected to either I/R or CaI. In lungs subjected to I/R alone, a fivefold increase in microvascular permeability occurred after 30 min of reperfusion (P < 0.001), and a tenfold increase was present after an additional 60 min of reperfusion (P < 0.01). Pretreatment of the I/R lungs with a CaM inhibitor (trifluoperazine, 100 microM) or with a MLCK inhibitor (ML-7,500 nM) blocked the microvascular damage at both 30 and 90 min of reperfusion. When the CaM inhibitor was introduced into the venous reservoir after 46 min of reperfusion, after the microvascular damage was present, no further increase in microvascular permeability occurred. Pretreatment of the lungs with a PKC inhibitor (staurosporine, 100 nM) did not alter the magnitude of the increased microvascular permeability produced by I/R or the time course of the damage. The calcium ionophore A23187 (7.5 microM) caused increases in Kfc values similar to those produced by I/R. Pretreatment of A23187-treated lungs with a CaM inhibitor produced no protective effect on the microvascular injury at 30 min after administration. Pretreatment of the CaI-challenged lungs with staurosporine significantly increased the microvascular barrier injury at 30 min compared with that occurring with I/R. When a beta-adrenergic receptor agonist (isoproterenol, 10 microM) was introduced to the lung after CaI-induced damage had occurred, no further increase in microvascular permeability was observed, and a trend toward reversal of injury occurred. We conclude from these studies that CaM/MLCK/MLC20 system is involved in our model of I/R-induced rat lung injury but is not involved in lung injury associated with Ca2+ entering the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.