Abstract

To examine the role of calcitonin gene-related peptide (CGRP) in cardioprotection of short-term and long-term exercise preconditioning (EP). Male Sprague-Dawley rats were, respectively, subjected to continuous intermittent treadmill training 3 days or 3 weeks as short-term or long-term EP protocols. The myocardial injury induced by isoproterenol (ISO) was performed 24 hours after short-term and long-term EP. The myocardial injury was evaluated in terms of the serum cardiac troponin levels and the hematoxylin-basic fuchsin-picric acid staining. Additionally, serum CGRP levels, CGRP expression in the dorsal root ganglion (DRG), and heart were analyzed as possible mechanisms to explain short-term and long-term EP-induced cardioprotection. Both short-term and long-term EP markedly attenuated the isoproterenol-induced myocardial ischemia with lower serum cardiac troponin levels. Short-term EP does not alter serum CGRP levels and CGRP expression in the DRG and heart. Long-term EP significantly increases serum CGRP levels and CGRP expression in the DRG and heart. The results indicate that short-term EP does not increase the synthesis and release of CGRP. Therefore, the cardioprotective effect of short-term EP does not involve CGRP adaptation. Furthermore, long-term EP increases CGRP synthesis in the DRG and promotes CGRP release in the blood and heart. Hence, CGRP may play an important role in the cardioprotective effect of long-term EP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call