Abstract

Plasmacytoid dendritic cells (pDCs) are major producers of type I interferons in response to activation of endosomal toll-like receptors (TLRs), e.g. TLR9. While a number of cell biological and intracellular signaling events associated with TLR9 activation in pDCs have been studied, role of free calcium (Ca2+) is not clear. We found that influx of extracellular Ca2+ is crucial for TLR9 mediated IFNα production by human pDCs. We also unraveled a role of Ca2+ in potentiating cellular uptake of self-DNA in complex with the cathelicidin antimicrobial peptide, LL37, an endogenous ligand for human TLR9 in autoimmune contexts. IFNα in response to TLR9 activation, by CpG oligonucleotides, is tuned within a window of Ca2+ concentration, through a bimodal regulatory switch, by differential engagement of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and calcineurin phosphatase (CALN). Ca2+ signaling for TLR9 activation at physiologic calcium concentrations depends on CAMKII recruitment, while inhibition of TLR9 activation at supraphysiologic calcium concentrations is mediated by CALN. This bimodal regulation was masked in response to physiological peptide-DNA complexes, presumably due to potentiation of complex formation and increased cellular uptake in higher Ca2+ concentrations. Thus infection susceptibility associated with relevant clinical contexts as well as role of Ca2+ signaling in autoimmune diseases warrant further investigations for novel pathogenetic cues involving pDC function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.