Abstract
The first step in attachment of Rhizobiaceae cells to plant root hair tips is mediated by a Ca2+-dependent, Ca2+-binding protein, rhicadhesin. The possible role of Ca2+ in synthesis, anchoring and activity of rhicadhesin was investigated. Growth of Rhizobium leguminosarum biovar viciae cells under Ca2+-limitation was found to result in loss of attachment ability. Under these conditions, rhicadhesin could not be usolated from the bacterial cell surface, but was found to be excreted in the growth medium. Divalent ions appeared to be essential for the ability of purified rhicadhesin to inhibit attachment of R. leguminosarum biovar viciae cells to pea root hair tips. Calcium ions were found not to be involved in binding of rhicadhesin to the plant surface, but appeared to be involved in anchoring of the adhesin to the bacterial cell surface. A model for the role of Ca2+ in activity of rhicadhesin is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.