Abstract

The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call