Abstract

Vascular endothelial cells adapt to changes in blood flow by altering the cell architecture and by producing various substances. We have previously reported that low shear stress induces endothelin 1 (ET-1) expression in endothelial cells and that this induction is mediated by depolymerization of actin fiber. In the present study, we examined the role of Ca2+ and protein kinase C (PKC) in shear stress-induced actin depolymerization and subsequent ET-1 gene expression. Exposure of cultured porcine aortic endothelial cells to low shear stress (5 dyne/cm2) for 3 hours increased the ratio of G-actin to total actin from 54 +/- 0.8% to 80 +/- 1.0%. This shear stress-induced actin depolymerization was completely blocked by chelation of extracellular Ca2+ with EGTA and partially inhibited by intracellular Ca2+ chelation with the tetraacetoxymethyl ester of BAPTA (BAPTA/AM). Pretreatment with staurosporine, a PKC inhibitor, or desensitization of PKC by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) for 24 hours also resulted in partial inhibition of shear stress-induced actin depolymerization. Although PKC activation by TPA mildly increased G-actin content, the effect of TPA and shear stress on actin depolymerization was not additive. Moreover, shear stress-induced ET-1 gene expression was inhibited by EGTA, BAPTA/AM, and staurosporine to a degree similar to the inhibition of actin depolymerization. In contrast, ET-1 gene expression induced by cytochalasin B, an actin-disrupting agent, was not affected by staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call