Abstract

We previously observed that aquaporins and glycerol facilitators exhibit different oligomeric states when studied by sedimentation on density gradients following nondenaturing detergent solubilization. To determine the domains of major intrinsic protein (MIP) family proteins involved in oligomerization, we constructed protein chimeras corresponding to the aquaporin AQPcic substituted in the loop E (including the proximal part of transmembrane domain (TM) 5) and/or the C-terminal part (including the distal part of TM 6) by the equivalent domain of the glycerol channel aquaglyceroporin (GlpF) (chimeras called AGA, AAG, and AGG). The analogous chimeras of GlpF were also constructed (chimeras GAG, GGA, and GAA). cRNA corresponding to all constructs were injected into Xenopus oocytes. AQPcic, GlpF, AAG, AGG, and GAG were targeted to plasma membranes. Water or glycerol membrane permeability measurements demonstrated that only the AAG chimera exhibited a channel function corresponding to water transport. Analysis of all proteins expressed either in oocytes or in yeast by velocity sedimentation on sucrose gradients following solubilization by 2% n-octyl glucoside indicated that only AQPcic and AAG exist in tetrameric forms. GlpF, GAG, and GAA sediment in a monomeric form, whereas GGA and AGG were found mono/dimeric. These data bring new evidence that, within the MIP family, aquaporins and GlpFs behave differently toward nondenaturing detergents. We demonstrate that the C-terminal part of AQPcic, including the distal half of TM 6, can be substituted by the equivalent domain of GlpF (AAG chimera) without modifying the transport specificity. Our results also suggest that interactions of TM 5 of one monomer with TM 1 of the adjacent monomer are crucial for aquaporin tetramer stability.

Highlights

  • We previously observed that aquaporins and glycerol facilitators exhibit different oligomeric states when studied by sedimentation on density gradients following nondenaturing detergent solubilization

  • To determine the domains of major intrinsic protein (MIP) family proteins involved in oligomerization, we constructed protein chimeras corresponding to the aquaporin AQPcic substituted in the loop E (including the proximal part of transmembrane domain (TM) 5) and/or the C-terminal part by the equivalent domain of the glycerol channel aquaglyceroporin (GlpF)

  • AQPcic replaced in the loop E and/or the C-terminal part by the equivalent domain of the glycerol channel GlpF

Read more

Summary

Introduction

We previously observed that aquaporins and glycerol facilitators exhibit different oligomeric states when studied by sedimentation on density gradients following nondenaturing detergent solubilization. To determine the domains of major intrinsic protein (MIP) family proteins involved in oligomerization, we constructed protein chimeras corresponding to the aquaporin AQPcic substituted in the loop E (including the proximal part of transmembrane domain (TM) 5) and/or the C-terminal part (including the distal part of TM 6) by the equivalent domain of the glycerol channel aquaglyceroporin (GlpF) (chimeras called AGA, AAG, and AGG). Substitution of tyrosine and tryptophan in the upper part of the sixth TM of AQPcic by the two corresponding amino acids of GlpF (a proline and a leucine, respectively) induced a switch from a water to a glycerol channel and a switch from a tetrameric to a monomeric state in nondenaturing detergent [20]. Our study shows that the C-terminal domain, including half of the sixth TM of the aquaporin AQPcic, can be replaced by the equivalent domain of GlpF without affecting channel specificity and quaternary organization

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call