Abstract

Present study aimed to evaluate the influence of carbon/nitrogen ratio (C/N) on mixotrophic growth of microalgae and role of nanomaterial in cell recovery and lipid improvement. In this study, three microalgae species were isolated, screened from local freshwater body for lipid assimilation. The microalgae were identified as Chlorococcum sp., Scenedesmus sp., and Euglena sp. Mixotrophic cultivation of each microalgae strain using various organic carbon sources was preferred in contrast with photoautotrophic mode. Sucrose represented as the preeminent source for enhancing the microalgae biomass of 3.5g/L and lipid content of 58.35%, which was a significant improvement as compared to control. Later, response surface methodology-central composite design (RSM-CCD), tool was employed to optimize the C/N ratio and demonstrated the maximum biomass production of 5.02g/L along with the increased lipid content of 60.34%. Ti nanoparticles (Ti nps) were added to the culture for lipid enhancement in the stationary phase and biomass removal was performed by nanoparticle (np)-mediated flocculation technique. Optimized concentration of 15ppm Ti nps determined the cell harvesting efficacy of 82.46% during 45min of sedimentation time and 1.23-fold lipid enhancement was reported. Extracted lipid was converted to fatty acid methyl esters (FAME) by the process of transesterification and analyzed by gas chromatography-mass spectrometry (GC-MS). Characterization of FAME revealed the presence of 56.31% of saturated fatty acid (SFA) and 29.06% unsaturated fatty acids (UFA) that could be processed towards sustainable biodiesel production. Hence, our results suggested that integration of mixotrophic cultivation and Ti nps emerged as a new cost-effective approach for biomass and lipid enhancement in microalgae Chlorococcum sp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call