Abstract

The regulation of natural killer (NK) cell activity is an important research goal for the development of immunotherapies. In this study, we identified transcription factors affecting NK cell activity. In particular, we screened transcription factors affected by interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) by protein/DNA arrays using primary NK cells. We found that celastrol, a c-Myb inhibitor, inhibited NK-92 cells more strongly than any other inhibitors of transcription factor candidates. In addition, c-Myb and c-Myb-related signaling molecules, e.g., Nemo-like kinase (NLK) and c-Myc, were regulated by the activation status of NK cells, suggesting that c-Myb is a key regulator of NK cell activity. We also found that celastrol inhibits NK-92-cell-mediated cytotoxicity via the downregulation of NKG2D and granzyme B. Knockdown studies also showed that c-Myb is important for NK cell activation. In particular, the knockdown of c-Myb did not significantly affect NK cell proliferation and survival but decreased the secretion of IFN-γ and the cytotoxicity of NK cells. Our data demonstrate that c-Myb plays a critical role in the activation of NK cells and therefore is a therapeutic target for cancer and viral diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.