Abstract

Exposure to diesel engine exhaust (DEE) impairs lung function. But the underlying mechanisms are still not fully understood. The aim of this study was to investigate the effects of long-term DEE exposure on lung inflammation and the underlying mechanisms. Sprague-Dawley male rats were exposed to DEE with 3 mg/m3 of diesel exhaust particles (DEP) for 12 weeks. Then urine, blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for the determination of biochemistry indexes, DNA methylation status, and histological changes in the lung. The results showed that the metabolites of polycyclic aromatic hydrocarbons (PAHs) 2-hydroxyphenanthrene (2-OHPh) and 9-OHPh, and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) level were higher in urine of DEE-exposed rats than control group. The level of proinflammatory cytokines IL-8, IL-6, and TNF-α was significantly higher in serum (1.8, 3.5, and nearly 1.0-fold increase, respectively), BALF (2.2, 3.8, and 2.0-fold increase, respectively) and lung tissues (3.5, 4.3, and 2.4-fold increase, respectively) of DEE-exposed rats than control group. While the level of clara cell secretory protein (CC16) and pulmonary surfactant protein D (SP-D) with anti-inflammatory property was obviously lower in serum (reduction of 29% and 38%, respectively), BALF (reduction of 50% and 46%, respectively) and lung tissues (reduction of 50% and 55%, respectively) of DEE-exposed rats than control group. Exposure to DEE also resulted in significant increases in total white blood cell (WBC), neutrophil, eosinophil, and lymphocyte number in BALF. Airway inflammation and remolding were apparent in DEE group. The methylation level of CCAAT/enhancer-binding protein alpha (C/EBPα) promoter was markedly increased (about 3.2-fold increase), and its mRNA and protein expression were significantly decreased (about 62% and 68% decrease, respectively) in the lungs of DEE-exposed rats compared with the group. Further, cell experiments were performed to investigate the relationship between C/EBPα and CC16, and CC16 function under DEP conditions. The results showed that DEP inhibited CC16 expression via methylation of C/EBPα promoter, and the increase of CC16 level significantly relieved the proinflammatory effects caused by DEP exposure. In conclusion, our data indicated that long-term exposure to DEE can cause lung inflammation, at least in part via methylation of C/EBPα promoter, and inhibition of CC16 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.