Abstract

The term “Business intelligence” is described as a plan or a strategy where the operations like reporting, data analysis, data mining, event processing are performed to improve the production and growth of a business enterprise or a business entity. And on the other hand, the “Knowledge management” is explained as well-organized management of resources and information within a commercial organization it can be a business too. Almost all business will have limitations and challenges which can be also known as the business problems. One of the main business problem is demand, the business plans must work according to the demand of the consumers. Analyzing the demand would provide the solutions for queries like what is the business trend? What is the need of the users? What should be the improvement make in the production? Where is the current position of the enterprise? And who all will be the competitors? For the predictive analysis a dataset of bitcoin is taken. The major aim of the study is to implement the strategies to overcome the business problems mainly the demand prediction. And the objective is to find out the relevant issues and the remedies by using knowledge management and business intelligence to the common business problems. The dataset has columns called lowest price, highest price, open price, close price, trading volume and market capital. The research methodology used is predictive analysis using PCA and K-means clustering algorithm. By this dataset predictive plots are developed as achieved results for easy analysis by using research methodology. PCA and K-means are the algorithm used for accurate prediction. The importance of study is to predict the future sale, as it is very essential for a business enterprise to find future demand so that the organization can improve production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.