Abstract

AbstractBotrocetin (venom coagglutinin) induces binding of von Willebrand factor (vWF) to platelet glycoprotein lb (GPIb), resulting in platelet agglutination. A mechanism whereby botrocetin causes vWF to change to an active platelet-agglutinating form is proposed. Incubation of native vWF with botrocetin yielded an increasingly active vWF with slower migration in two-dimensional immunoelectrophoresis but with no apparent change in vWF multimer pattern. The “activated” vWF eluted mainly in the void volume (Vo) (Bio-Gel A-15m column chromatography). Botrocetin eluted in the included volume (Vi). Vo peaks appeared to contain a vWF-botrocetin complex, based on bioassays and immunoassays. 125l-Botrocetin mixed with vWF eluted in two peaks: in the Vo, coincident with active vWF, and in the Vi. With von Willebrand disease (vWD) plasma lacking vWF, 128l-Botrocetin eluted in the Vi only. It did not bind to platelets without vWF. In aggregometric studies, antibodies (Ab) against botrocetin, vWF, and GPIb prevented botrocetin-induced platelet agglutination and caused dissolution of preformed platelet agglutinates. Immunostaining of aggregates with antibotrocetin Ab revealed a positive reaction. Botrocetin appears to act in a two-step manner, first binding with vWF to form a complex, which then binds to GPIb to cause agglutination. All three components, vWF, botrocetin, and GPIb, appear to be required for maintenance of stable platelet agglutinates. © 1989 by Grune & Stratton, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call