Abstract

Difluoroboron β-diketonate−polymer conjugates have remarkable solid-state luminescent properties that are useful in a variety of fields including multiphoton microscopy, cell biology, and tumor hypoxia imaging. Despite the successful applications of these systems, the role of boron in these polymeric materials has not been thoroughly investigated. Here we explore a boron-free model system with dibenzoylmethane chromophores in poly(lactic acid) (PLA) for comparison. The hydroxyl-functionalized aromatic diketone, dibenzoylmethane (dbmOH), is weakly fluorescent in the solid state and nonfluorescent in solution while its difluoroboron complex (BF2dbmOH) is highly emissive in both states. Using dbmOH and BF2dbmOH as initiators, well-defined end-functionalized polylactides, dbmPLA and BF2dbmPLA, were obtained via tin-catalyzed controlled ring-opening polymerization. Boronation of the dbmOH initiator affects the polymerization kinetics and the photophysical properties of the resulting BF2dbmPLA material. Both db...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call