Abstract

Seasonal water-level changes in floodplain lakes can induce variations in primary and secondary production, thus affecting trophic interactions. In this study, we tested the latter by studying size- and temporal hydrology-related shifts in the diet of shortjaw tapertail anchovy Coilia brachygnathus (Actinopterygii, Engraulidae) from Lake Poyang. During the wet season, δ13C values ranged from −28.2‰ for small anchovies to −24.6‰ for larger individuals, but δ15N ranged from 18.9‰ for smaller fish to 12.4‰ for larger fish. Significant 13C-enrichment and 15N-depletion occurred with increasing size, revealing that different carbon sources were used as the fish grew. Given the high hydrologic fluctuation levels, significant differences in δ13C values were observed among larger anchovies between seasons, indicating a temporal dietary shift. Anchovies fed primarily on shrimp and fish during the low-water season despite the predominance of zooplankton during the two seasons studied, which indicated increased piscivorous reliance. C. brachygnathus exhibited higher δ15N values during the wet season because the food items were 15N-enriched. Human waste brought by floods could be another possible interpretation. Considering C. brachygnathus is an important link between plankton production and higher piscivorous trophic levels, changes in the species are expected to affect the functioning of lake food webs along the trophic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call