Abstract

In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.