Abstract

In the study, we investigated the different compositions of biochar-derived dissolved organic matter (BDOM) that play a key role in the biodegradation of sulfamethoxazole (SMX) and chloramphenicol (CAP) by P. stutzeri and S. putrefaciens, and found that aliphatic compounds in Group 4, fulvic acid like in Region III, and solid microbial byproduct like in region IV are key common factors. The growth and antibiotic degradation efficiency of P. stutzeri and S. putrefaciens are positively correlated with the content of Group 4 and Region III, and negatively correlated with Region IV. This is consistent with the optimal biodegradation results of BDOM700 with the highest content of Group 4 and Region III. Additionally, the degradation efficiency of SMX by Pseudomonas stutzeri is negatively correlated with the percentage of polycyclic aromatics in Group 1, but not with CAP. Similarly, the percentage of fatty acids in S. putrefaciens was positively correlated with Group 1, whereas P. stutzeri did not. This indicates that some components of BDOM have varying effects on different bacteria or types of antibiotics. This study provides new insights into enhancing antibiotic biodegradation by controlling the composition of BDOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.