Abstract

Here, we have carried out a spectroscopic investigation on the operational organic light-emitting diodes (OLEDs) to determine the role of emission layer thickness on the optoelectronic performance of OLEDs based on a poly(9,9-dioctylfluorene- alt-benzothiadiazole) (F8BT) copolymer system. Our study shows that delayed fluorescence (DF) via triplet-triplet annihilation (TTA) contributes significantly to boost the OLED efficiency through its fractional contribution. Interestingly, we note that DF contribution varies as a function of the emissive layer thickness. From the time-resolved electroluminescence (TREL) and triplet absorption (under electrical excitation) studies, we have seen that the emissive layer thickness controls triplet exciton generation and decay processes. From TREL, we have also shown that singlet-triplet annihilation (STA) is the dominant fluorescence quenching mechanism in bulk of the emissive layer, whereas thinner devices have significant exciton quenching at the interface of the injection layer/F8BT. The strength of STA differs in thin versus thick samples, which has been correlated with the spectral & spatial overlap integral of singlet and triplet states. Hence, STA strength and triplet population density are critical parameters for an explanation of high efficiency in unusually thick F8BT OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.