Abstract

We have used low energy electron-excited nanoscale luminescence spectroscopy (LEEN) to detect the defects in each layer of AlGaN/GaN HEMT device structures to correlate their effect on two-dimensional electron gas (2DEG) confinement. Also, we have used Auger electron spectroscopy (AES) to detect the chemical composition as a function of lateral position on a growth wafer and to correlate chemical effects with electronic properties. We investigated several high-quality AlGaN/GaN heterostructures of varying electrical properties using incident electron beam energies of 0.5–15 keV to probe electronic state transitions within each of the heterostructure layers. The LEEN depth profiles reveal differences between sucessful and failed structures and highlight the importance of acceptor deep defect levels in the near 2DEG region. Variations in the GaN and AlGaN band edge emissions, as well as the yellow defect emission across an AlGaN/GaN heterostructure growth wafer have been observed. AES and LEEN spectroscopy of the growth wafer suggest that variation in the cation concentration may play a role in the mechanism responsible for the deep aceceptor level emission in the AlGaN barrier layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call