Abstract

An investigation of mercury-resistant bacteria was undertaken to determine their role in the accumulation of mercury in a simplified food chain. Oysters (Crassostrea virginica) were maintained in a closed system, sealed aquarium with stirred, aerated water containing 10 mug of 203-HgCl2 per liter. Uptake of 203-Hg by oysters held under control conditions was compared with that of 203-Hg uptake by oysters under similar conditions except that mercury-accumulating and mercury-metabolizing species of Pseudomonas, isolated from Chesapeake Bay, were added to the experimental oysters. After incubation for 4 days, the major portion ofthe 203-Hg in the water column was found to be associated with the microparticulate fraction, corresponding to a rise in total viable count. Mercury accumulation in the oysters was significantly higher in the gill and visceral tissue than other tissue. Mercury concentrations were 200 times greater in tissue fractions of oysters dosed with mercury-metabolizing bacteria compared with the oysters held under control conditions without mercury-metabolizing bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.