Abstract

Antiperovskite materials have garnered significant attention due to their rich array of physical properties. In this study, we undertake a theoretical exploration into the phase stabilities, and the thermal and electronic transport properties of magnesium-based antiperovskite Mg3XN (X = P, As, Sb, and Bi) based on density functional theory (DFT) calculations, aiming at designing promising thermoelectric materials. The Mg3PN and Mg3AsN possess potential lattice distortion and strong quartic anharmonicity associated with the tilting displacement of Mg6N octahedra. After phonon renormalization, the thermal conductivity of Mg3PN and Mg3AsN exhibits relatively subdued temperature responsiveness with T−0.47 and T−0.62, respectively. Of note, the thermal conductivity of Mg3BiN drops the lowest at 900 K because of its distinctive rattle-dominated flat vibrational modes and strong temperature responsiveness with T−0.96, despite having a high initial value. Moreover, the combination of multiple degeneracy pockets and lighter dispersion band edges in Mg3XN ensures high Seebeck coefficient and impressive electronic conductivity, respectively. Ultimately, Mg3BiN achieves the optimal power factor, which also guarantees its excellent thermoelectric performance with the ZT values of 1.03 and 1.01 for n-type and p-type at 900 K, respectively. Our findings shed light on the significant impact of unconventional temperature-responsive lattice thermal conductivity on thermoelectric materials for high-temperature applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.