Abstract

BackgroundIt has been noted that nitric oxide (NO) is involved in the ischemic preconditioning (IPC)–mediated cardioprotection. Diabetes is a downregulator of atrial natriuretic peptide (ANP), resulting in low expression of endothelial nitric oxide synthase (eNOS) by which NO level get reduced. The purpose of the present study was to investigate the role of ANP in attenuated cardioprotective effect of IPC in the diabetic rat heart. MethodsThe heart was isolated from the diabetic rat and mounted on Langendorff's apparatus, subjected to 30-min ischemia and 120-min reperfusion. IPC was mediated by four cycles of 5-min ischemia and 5-min reperfusion. The infarct size was estimated using triphenyltetrazolium chloride stain, and coronary effluent was analyzed for lactate dehydrogenase and creatinine kinase-MB release to assess the degree of myocardial injury. The cardiac release of NO was estimated indirectly by measuring the release of nitrite in coronary effluent. ResultsIPC-mediated cardioprotection was significantly attenuated in the diabetic rat as compared with the normal rat. Perfusion of ANP (0.1 μM/L) in the diabetic rat heart significantly restored the attenuated cardioprotective effect of IPC and also increased the release of NO. However, this observed cardioprotection was significantly attenuated by perfusion of N-nitro L-arginine methyl ester, an eNOS inhibitor (100 μM/L) noted in terms of increase in myocardial infarct size, release of lactate dehydrogenase and creatinine kinase-MB, and also decreases in release of NO. ConclusionsThus, it is suggested that ANP restores the attenuated cardioprotective effect in the diabetic heart which may be due to increase in the expression of eNOS and subsequent increase in the activity of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.