Abstract
ObjectiveTo investigate the role of inflammatory response, oxidative damage and changes of ATP-sensitive potassium channels (sKATP) in basilar artery (BA) smooth muscle cells (SMCS) of rabbits in subarachnoid hemorrhage (SAH) model. MethodsTime course studies on inflammatory response by real-time PCR, oxidative process and function of isolated basilar artery after SAH in New Zealand White rabbits were performed. Basilar artery smooth muscle cells (BASMCs) in each group were obtained and whole-cell patch-clamp technique was applied to record cell membrane capacitance and KATP currents. The morphologies of basal arteries were analyzed. Protective effect of shikonin were also determine by same parameters. ResultsInflammatory cytokines levels were highest at 24h compare to 72h after SAH whereas the oxidative damage and cell death marker were at highest peak at 72h. Oxidative damage peak coincided with significant alterations in cell membrane capacitance, KATP currents and morphological changes in basilar arteries. Shikokin pretreatment attenuated early inflammatory response at 24h and associated oxidative damage at 72h. Finally, shikonin attenuated morphological changes in basilar arteries and dysfunction. ConclusionCurrents of ATP-sensitive potassium channels in basilar smooth muscle cells decreased after SAH by putative oxidative modification from immediate inflammatory response and can be protected by shikonin pretreatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.