Abstract

Carbon nanotubes (CNT) are potentially promising fibers for ultra high strength composites. In order to fully harness the outstanding mechanical properties of carbon nanotubes as fiber reinforcements, it is essential to understand the nature of load transfer between fiber and matrix under various types of loading conditions that include tension, compression, torsion and a combination thereof. In this paper, we study the compressive behavior (buckling and post-buckling) of carbon nanotubes in the neat form, when they are embedded in polyethylene matrix and with interface chemical modifications using molecular dynamics simulations based on Tersoff–Brenner potential. It is observed that the critical load for buckling increases only very marginally for nanotubes embedded in polythene matrix (with non-bonded interface) compared to neat CNTs. When CNTs are chemically bonded to the matrix, the compressive behavior occurs in two phases; pre- and post-buckling phases. First, the critical stress for buckling is found to reduce because the change in chemical bonding induces deviation from perfect cylindrical structure. In the post-buckling phase, however, the nanotubes behave similar to short fibers and deform by crushing. The results are compared with continuum solutions, wherever applicable. It is shown that the continuum solutions should be applied carefully whenever the effect of nanoscale interfaces becomes a factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.