Abstract

Abstract VAPEX (vapour extraction) is an oil recovery process, in which heavy oil or bitumen is mobilized by injection of a low molecular weight hydrocarbon solvent and is drained by gravity to a horizontal production well. It has attracted considerable attention because of its potential applicability to problematic reservoirs and the potential for in-situ upgrading of heavy oil during the process. Oil drainage rate under VAPEX is controlled by the viscosity of solvent diluted oil and can be affected substantially by de-asphalting. In-situ de-asphalting can be advantageous because it reduces the oil viscosity and leads to production of upgraded oil. However, the precipitated asphaltenes can also plug the pores of the formation and cause severe damage to the permeability. The objective of the current work was to determine whether the beneficial effects of asphaltene precipitation would outweigh any formation damage. The effects of in-situ precipitation and deposition of asphaltenes on the rate of oil drainage and the quality of the produced oil under different operating conditions were experimentally evaluated. The experiments were conducted in a physical model, packed with 140 - 200 mesh sand, and propane was used as the solvent. The quality of the produced oil samples was evaluated through the SARA technique and viscosity measurements. The experimental results show that the oil produced at higher injection pressures was substantially upgraded, but the viscosity reduction by asphaltene precipitation did not lead to higher production rates. The effect of viscosity reduction was negated by the accompanying damage to formation permeability. The huff and puff injection of toluene into the production well, to remove damage from the near well zone, was tried but proved to be ineffective. It led to production of oil with higher asphaltene content with no improvement in the rate of oil production compared to the lower pressure operation without asphaltene precipitation. However, co-injection of toluene with propane was successful in increasing the rate of production and the extent of upgrading obtained was encouraging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.