Abstract

In recent years, the harmful effects of drought stress have been be mitigated by using bioactive compounds such as antioxidants and osmolytes. In this research, pot experiments were carried out to investigate the effects of ascorbic acid, glutathione and proline on alleviating the harmful effect of drought stress in chickpea plants during season 2017. Chickpea plant seeds were soaked in ascorbic acid (0.75 mM), glutathione (0.75 mM), proline (0.75 mM) singly and/or in sequence combinations for 4 h and then planted in pots. The pots were irrigated with water after seven days (to serve as control), after 14 days (moderate drought stress) and after 28 days (severe drought stress). The sequence combination of antioxidants and proline under drought stress has not been studied yet. The results showed significantly decreased in plant growth, yielding characteristics, photosynthetic pigments and soluble protein content in response to moderate and severe drought stress. Moreover, treatment with antioxidants caused increment the antioxidant enzyme activity, non-enzymatic antioxidant (ascorbic acid and glutathione) contents and endogenous proline in stressed and unstressed plants. In conclusion, The sequence combination of antioxidants and proline caused improvement in plant growth under drought stress by up-regulating the antioxidant defense system and osmolyte synthesis.

Highlights

  • All over the world, especially in arid and semi-arid regions that were suffering from water limitation, which is considered the most harmful stresses in the plant environment and reduces plant growth and development [1]

  • Glutathione, proline and combination caused significantly increased in all growth characteristics in non-stressed and stressed plants as compared with non- stressed plants

  • Drought stress has a negative effect on plant growth, chlorophyll synthesis and protein content

Read more

Summary

Introduction

Especially in arid and semi-arid regions that were suffering from water limitation, which is considered the most harmful stresses in the plant environment and reduces plant growth and development [1]. Prolongation of the duration of the water stress causes significant damage and plant cell death due to the generation of excess reactive oxygen species (ROS) which causes lipid peroxidation, degradation of proteins and nucleic acids causing an alteration in plant metabolism [2,3]. About 45% of world agricultural land suffers from drought stress [4]. Increasing plant resistance to drought stress would be the most economical approach to improving agricultural productivity and reducing agricultural use of freshwater resources [5]. General metabolic adaptation, which enables plants to cope with water or osmotic stress, involves an increased synthesis of osmoprotectants, such as proline (Pro) [8]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call