Abstract
Abstract: Traditional drug discovery methods such as wet-lab testing, validations, and synthetic techniques are time-consuming and expensive. Artificial Intelligence (AI) approaches have progressed to the point where they can have a significant impact on the drug discovery process. Using massive volumes of open data, artificial intelligence methods are revolutionizing the pharmaceutical industry. In the last few decades, many AI-based models have been developed and implemented in many areas of the drug development process. These models have been used as a supplement to conventional research to uncover superior pharmaceuticals expeditiously. AI's involvement in the pharmaceutical industry was used mostly for reverse engineering of existing patents and the invention of new synthesis pathways. Drug research and development to repurposing and productivity benefits in the pharmaceutical business through clinical trials. AI is studied in this article for its numerous potential uses. We have discussed how AI can be put to use in the pharmaceutical sector, specifically for predicting a drug's toxicity, bioactivity, and physicochemical characteristics, among other things. In this review article, we have discussed its application to a variety of problems, including de novo drug discovery, target structure prediction, interaction prediction, and binding affinity prediction. AI for predicting drug interactions and nanomedicines were also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.