Abstract
This study presents an experimental investigation on the effect of artificial aggregate utilization fracture and permeability properties of concretes. For this, two types of artificial aggregates, namely, artificial fly ash aggregate (AFA) from cold bonding agglomeration process of fly ash and Portland cement and artificial slag aggregate (ASA) from cold bonding agglomeration process of ground granulated blast furnace slag and Portland cement, were replaced with natural aggregate as coarse aggregate. Moreover, to investigate the influence of water-to-cement ratio, three different water-to-cement ratios of 0.35, 0.45, and 0.55 were considered in the concrete production. The concretes were tested for the mechanical property in terms of as compressive strength, modulus of elasticity, and splitting, net flexural strength, and fracture energy and also permeability property such as water sorptivity, water penetration, gas permeability, and resistance to chloride ion penetration. The test results were also analyzed by means of statistical technique, namely, GLM-ANOVA. It was found that the use of cold bonded fly ash and slag aggregates were very effective on the performance characteristics of concretes depending on w/c ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering and Applied Sciences Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.