Abstract

The hexagonal domain suppression-effects in cubic-GaNAs grown by metalorganic chemical-vapor deposition (MOCVD) is reported. A thin buffer layer (20 nm) was first grown on a substrate at 853 K using trimethylgallium and dimethylhydrazine (DMHy), and GaNAs samples were grown at different AsH3 flow rates (0 ∼ 450 μmol/min) at 1193 K. As a result, three types of surface morphologies were obtained: the first was a smooth surface (AsH3 = 0 μmol/min); the second was a mirrorlike surface having small and isotropic grains (AsH3 : 45 ∼ 225 μmol/min ); and the third involved three-dimensional surface morphologies (above 450 μmol/min of AsH3 flow rate). Furthermore, it was confirmed using X-ray diffraction that the mixing ratio of hexagonal GaNAs in cubic GaNAs decreased with an increase of the AsH3 flow rate. We could obtain GaNAs having a cubic component of above 85% at AsH3 flow rates above 20 μmol/min. Therefore, the MOCVD growth method using AsH3 and DMHy was mostly effective for suppressing hexagonal GaNAs. It was observed that the photoluminescence intensity of GaNAs was decreased with increase of arsine flow rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call