Abstract

Previously, we reported that Arg177 is involved in MnII binding at the MnII binding site of manganese peroxidase isozyme 1 (MnP1) of Phanerochaete chrysosporium by examining two mutants: R177A and R177K. We now report on additional mutants: R177D, R177E, R177N, and R177Q. These new mutant enzymes were produced by homologous expression in P. chrysosporium and were purified to homogeneity. The molecular mass and the UV/visible spectra of the ferric and oxidized intermediates of the mutant enzymes were similar to those of the wild-type enzyme, suggesting proper folding, heme insertion, and preservation of the heme environment. However, steady-state and transient-state kinetic analyses demonstrate significantly altered characteristics of MnII oxidation by these new mutant enzymes. Increased dissociation constants (Kd) and apparent Km values for MnII suggest that these mutations at Arg177 decrease binding of MnII to the enzyme. These lowered binding efficiencies, as observed with the R177A and R177K mutants, suggest that the salt-bridge between Arg177 and the MnII binding ligand Glu35 is disrupted in these new mutants. Decreased kcat values for MnII oxidation, decreased second-order rate constants for compound I reduction (k2app), and decreased first-order rate constants for compound II reduction (k3) indicate that these new mutations also decrease the electron-transfer rate. This decrease in rate constants for compounds I and II reduction was not observed in our previous study on the R177A and R177K mutations. The lower rate constants suggest that, even with high MnII concentrations, the MnII binding geometries may be altered in the MnII binding site of these new mutants. These new results, combined with the results from our previous study, clearly indicate a role for Arg177 in promoting efficient MnII binding and oxidation by MnP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call