Abstract

A system in which injection of mice with an antibody to mouse IgD that they recognize as foreign stimulates a large, T cell-dependent IgG response was used to study whether Ag-specific T cell help is required to stimulate polyclonal (non-Ag-specific) IgG production in vivo. Igha x Ighb allotype heterozygous mice were injected with a conjugate of a foreign Ag coupled to a mAb specific for one of the two IgD allotypes expressed in these mice. This conjugate cross-links mIgD on B cells that express the recognized allotype. These cells process the conjugate and present the foreign Ag to Ag-specific T lymphocytes, which become activated. Thus, B cells of the recognized allotype can be stimulated by cross-linking of their mIgD, Ag-specific T cell help, non-Ag-specific cytokines, and non-Ag-specific contact with activated T cells. In contrast, B cells that express the Igh allotype not recognized by the Ag-anti-IgD antibody conjugate (bystander B cells) can be stimulated in this system only by non-Ag-specific cytokines and non-Ag-specific contact with activated T cells. Although both recognized and bystander B cells in conjugate-injected mice demonstrated substantial increases in size and Ia expression, only the recognized B cells were induced to synthesize DNA and to make a substantial polyclonal Ig response. Bystander B cells still failed to secrete IgG when mice were injected with an anti-IgD-Ag conjugate specific for the other Igh allotype as well as a mAb that cross-linked IgD of the bystander B cell allotype. These observations demonstrate that although non-Ag-specific cytokine and contact-mediated T cell help are sufficient to induce B cells to increase in size and Ia expression in anti-IgD antibody-injected mice, Ag-specific T cell help is required to stimulate the generation of an IgG response in these mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.