Abstract

BackgroundAs part of a study to determine the impact of insecticide resistance on the effectiveness of long-lasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission.MethodsFor four consecutive years (2011–2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified, their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays.ResultsAnopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a human-biting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%. Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An. coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010 and 0.481 ib/p/n.ConclusionsThe study highlights the epidemiological role of An. rufipes alongside the members of the An. gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to effective vector management strategies.

Highlights

  • As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission

  • The study highlights the epidemiological role of An. rufipes alongside the members of the An. gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon

  • Over 140 species have been identified in Africa [3, 4], of which less than 20 have been shown to support the development and propagation of human Plasmodium species [5]. Their relative contribution to malaria transmission greatly varies depending on their behaviour and densities as influenced by environmental conditions

Read more

Summary

Introduction

As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission. Over 140 species have been identified in Africa [3, 4], of which less than 20 have been shown to support the development and propagation of human Plasmodium species [5] Their relative contribution to malaria transmission greatly varies depending on their behaviour (host seeking, feeding and resting) and densities as influenced by environmental conditions. These differences in Anopheles behaviour and density, along with vector longevity, are key factors driving malaria transmission and epidemiological patterns observed across Africa [6, 7]. In areas with numerous potential vectors, an in-depth understanding of vectors dynamics is fundamental to designing interventions tailored to the local eco-epidemiological situation [8, 9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call