Abstract
This study reports the effect of annealing time (15 min, 1.5 and 3 h) and temperature (850, 860 and 870 °C) on the structural and superconducting properties of thin films by means of scanning electron microscopy (SEM), X-Ray analysis (XRD), electron dispersive X-Ray (EDX), resistivity and transport critical current density (Jc) measurements. Zero resistivity transition temperatures (Tc) of the films produced are estimated from the dc resistivity measurements. In addition, the phase and lattice parameters are determined from XRD patterns when the microstructure, surface morphology and element composition analyses of the samples are investigated by SEM and EDX measurements, respectively. The results indicate that Tc values of the films obtained are observed to be in a range of 23–102 K. The Tc of the film annealed at 870 °C for 3 h is found to be the smallest (23 K) while the film annealed at 860 °C for 3 h is noted to obtain the maximum Tc value (102 K). On the other hand, the maximum (minimum) Jc is found to be about 2068 A/cm2 (20 A/cm2) for the film annealed at 860 °C for 3 h (870 for 3 h). Moreover, according to the refinement of cell parameters done by considering the structural modulation, the greatest Bi-2223 phase fraction is noticed to belong to the film annealed at 860 °C for 3 h. Furthermore, SEM measurements show that the best surface morphology, largest grain size and grain connectivity are observed for that film. Based on these results, Tc and Jc values of the samples studied are found to depend strongly on the microstructure. As for EDX results, the elements used for the preparation of samples are observed to distribute homogeneously. The aim of this study is not only to investigate the changes of structural and superconducting properties of the films produced in the varied time and temperature but also to determine the best ambient for the film fabrication and show the feasibility of obtaining Bi-2223 film with tailored structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.