Abstract

Previous work has shown that when Vero cells with surface-bound diphtheria toxin are exposed to low pH, toxin entry across the plasma membrane is induced and that this entry involves two steps, insertion of the B-fragment of the toxin into the membrane and translocation of the enzymatically active A-fragment to the cytosol. Here we have studied the role of permeant anions in this process. It was found that when the B-fragment was inserted into the membrane, part of it, a 25-kDa polypeptide, was shielded from externally added Pronase. This insertion did not require permeant anions. The translocation of the A-fragment was monitored by measuring either its ability to inhibit protein synthesis in the cells or the appearance of radioactively labeled 21-kDa fragment after treatment of the cells with externally applied Pronase. The translocation of the A-fragment was dependent on the presence of permeant anions in the medium. However, when the cells were depleted of Cl- by incubation in Cl- free buffer at high pH, translocation of the A-fragment did not require permeant anions in the medium. The possibility that translocation of the A-fragment is inhibited by an outward directed chloride gradient rather than by the absence of chloride is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call