Abstract

Cu and Ag precursors that are volatile, reactive, and thermally stable are currently of high interest for their application in atomic‐layer deposition (ALD) of thin metal films. In pursuit of new precursors for coinage metals, namely Cu and Ag, a series of new N‐heterocyclic carbene (NHC)‐based CuI and AgI complexes were synthesized. Modifications in the substitution pattern of diketonate‐based anionic backbones led to five monomeric Cu complexes and four closely related Ag complexes with the general formula [M( tBuNHC)(R)] (M=Cu, Ag; tBuNHC=1,3‐di‐tert‐butyl‐imidazolin‐2‐ylidene; R=diketonate). Thermal analysis indicated that most of the Cu complexes are thermally stable and volatile compared to the more fragile Ag analogs. One of the promising Cu precursors was evaluated for the ALD of nanoparticulate Cu metal deposits by using hydroquinone as the reducing agent at appreciably low deposition temperatures (145–160 °C). This study highlights the considerable impact of the employed ligand sphere on the structural and thermal properties of metal complexes that are relevant for vapor‐phase processing of thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.