Abstract

Whilst crucial for behavioural and homeostatic responses to environmental challenges, chronic elevation of sympathetic nervous system activity to specific vascular beds is associated with hypertension. Indeed such elevated activity may drive the increase in blood pressure seen in some people and in some experimental models of hypertension. This review discusses the neural circuitry involved in generating and modulating sympathetic efferent nerve activity, focusing on the premotor neurons of the rostral ventrolateral medulla. Neurons in the rostral ventrolateral medulla show altered responses to angiotensin II in experimental models of hypertension, suggesting that this might be an important node for interaction between these two systems that are crucial for regulation of blood pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.