Abstract

Aim: To investigate the role of angiotensin type 1 (AT1) and type 2 (AT2) receptors in hypoxia-induced retinal vascular hyperpermeability. Methods: Brown-Norway rat pups were exposed to hyperoxic conditions from postnatal day 7 (P7) to P12, and to subsequent normal air for 5 days [oxygen-induced retinopathy (OIR) model]. Olmesartan medoxomil (AT1 receptor antagonist; administered orally), PD123319 (AT2 receptor antagonist; administered subcutaneously) or a vehicle was administered once daily during the last 5 days. At P16, the retinal permeability was determined by measuring the leaked fluorescein-conjugated dextran concentration in the retina. The vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) α proteins in the retina were assessed by an ELISA and western blotting, respectively. Results: Olmesartan medoxomil partially, but significantly, inhibited the retinal vascular hyperpermeability induced by hypoxia. In contrast, PD123319 did not show a significant effect. The VEGF and HIF-1α protein levels were significantly elevated in the OIR retina; however, there was no significant effect of olmesartan medoxomil on the expression of either protein. Conclusions: These results suggest that the AT1 receptor is, at least partly, responsible for hyperpermeability in the OIR rat retina via a mechanism independent of HIF-1 and VEGF expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.