Abstract

BackgroundOver the past fifteen years, we have demonstrated that cortisol and dehydroepiandrosterone (DHEA) have opposite effects on the regulation of protein kinase C (PKC) activity in the context of the immune system. The anti-glucocorticoid effect of DHEA is also related to the regulation of splicing of the glucocorticoid receptor (GR), promoting the expression of GRβ isoform, which acts as a negative dominant form on GRα activity. Moreover, it is very well known that DHEA can be metabolized to androgens like testosterone, dihydrotestosterone (DHT), and its metabolites 3α-diol and 3β-diol, which exert their function through the binding of the androgen receptor (AR). Based on this knowledge, and on early observation that castrated animals show results similar to those observed in old animals, the purpose of this study is to investigate the role of androgens and the androgen receptor (AR) in DHEA-induced expression of the PKC signaling molecule RACK1 (Receptor for Activated C Kinase 1) and cytokine production in monocytes.ResultsHere we demonstrated the ability of the anti-androgen molecule, flutamide, to counteract the stimulatory effects of DHEA on RACK1 and GRβ expression, and cytokine production. In both THP-1 cells and human peripheral blood mononuclear cells (PBMC), flutamide blocked the effects of DHEA, suggesting a role of the AR in these effects. As DHEA is not considered a direct AR agonist, we investigated the metabolism of DHEA in THP-1 cells. We evaluated the ability of testosterone, DHT, and androstenedione to induce RACK1 expression and cytokine production. In analogy to DHEA, an increase in RACK1 expression and in LPS-induced IL–8 and TNF–α production was observed after treatment with these selected androgens. Finally, the silencing of AR with siRNA completely prevented DHEA-induced RACK1 mRNA expression, supporting the idea that AR is involved in DHEA effects.ConclusionsWe demonstrated that the conversion of DHEA to active androgens, which act via AR, is a key mechanism in the effect of DHEA on RACK1 expression and monocyte activation. This data supports the existence of a complex hormonal balance in the control of immune modulation, which can be further studied in the context of immunosenescence and endocrinosenescence.

Highlights

  • Over the past fifteen years, we have demonstrated that cortisol and dehydroepiandrosterone (DHEA) have opposite effects on the regulation of protein kinase C (PKC) activity in the context of the immune system

  • The anti-androgen flutamide prevents the stimulatory effects of DHEA on Receptor for Activated C Kinase 1 (RACK1) expression and cytokine production The aim of this study was to investigate the role of androgens and androgen receptor (AR) in the immunostimulatory effects of DHEA

  • We first investigated the ability of the anti-androgen flutamide to modulate the stimulatory effects of DHEA in both the human promyelocytic THP-1 cell line, and in human peripheral blood mononuclear cells (PBMCs)

Read more

Summary

Introduction

Over the past fifteen years, we have demonstrated that cortisol and dehydroepiandrosterone (DHEA) have opposite effects on the regulation of protein kinase C (PKC) activity in the context of the immune system. It is believed to act as signal integrator, which interconnects distinct signaling pathways to control many essential cellular processes, including protein translation, developmental processes, multiple hormonal responses, pathogen infection resistance, environmental stress responses, and miRNA production. These multiple functional roles are fitting, considering the scaffolding nature of RACK1 protein [10,11,12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call