Abstract

Tomato flavor is dependent upon a complex mixture of volatiles including multiple acetate esters. Red-fruited species of the tomato clade accumulate a relatively low content of acetate esters in comparison with the green-fruited species. We show that the difference in volatile ester content between the red- and green-fruited species is associated with insertion of a retrotransposon adjacent to the most enzymatically active member of a family of esterases. This insertion causes higher expression of the esterase, resulting in the reduced levels of multiple esters that are negatively correlated with human preferences for tomato. The insertion was evolutionarily fixed in the red-fruited species, suggesting that high expression of the esterase and consequent low ester content may provide an adaptive advantage in the ancestor of the red-fruited species. These results illustrate at a molecular level how closely related species exhibit major differences in volatile production by altering a volatile-associated catabolic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.