Abstract
Action potentials elicited in the axon actively back-propagate into the dendritic tree. During this process their amplitudes can be modulated by internal and external factors. We used a compartmental model of a hippocampal CA1 pyramidal neuron to illustrate how this modulation could depend on (1) the properties of an A-type K+ conductance that is expressed at high density in hippocampal dendrites and (2) the relative timing of synaptic activation. The simulations suggest that the time relationship between pre- and postsynaptic activity could help regulate the amplitude of back-propagating action potentials, especially in the distal portion of the dendritic tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.