Abstract
Repetitive synapse activity induces various forms of short-term plasticity. The role of presynaptic mechanisms such as residual Ca2+ and vesicle depletion in short-term facilitation and short-term depression is well established. On the other hand, the contribution of postsynaptic mechanisms such as receptor desensitization and saturation to short-term plasticity is less well known and often ignored. In this review, I will describe short-term plasticity in retinogeniculate synapses of relay neurons of the dorsal lateral geniculate nucleus (dLGN) to exemplify the synaptic properties that facilitate the contribution of AMPA receptor desensitization to short-term plasticity. These include high vesicle release probability, glutamate spillover and, importantly, slow recovery from desensitization of AMPA receptors. The latter is strongly regulated by the interaction of AMPA receptors with auxiliary proteins such as CKAMP44. Finally, I discuss the relevance of short-term plasticity in retinogeniculate synapses for the processing of visual information by LGN relay neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.