Abstract

The regulation of nitrogenase biosynthesis and activity by ammonia was studied in the heterocystous cyanobacterium Anabaena cylindrica. Nitrogenase synthesis was measured by in vivo acetylene reduction assays and in vitro by an activity-independent, immunoelectrophoretic measurement of the Fe-Mo protein (Component I). When ammonia was added to differentiating cultures after a point when heterocyst differentiation became irreversible, FeMo protein synthesis was also insensitive to ammonia. Treating log-phase batch cultures with 100% O 2 for 30 min resulted in a loss of 90% of nitrogenase activity and a 50% loss of the FeMo protein. Recovery was inhibited by chloramphenicol but not by ammonia or urea. The addition of ammonia to log-phase cultures resulted in a decrease in specific levels of nitrogenase activity and FeMo protein that occurred at the same rate as algal growth and was independent of O 2 tension of the culture media. However, in light-limited linear-phase cultures, ammonia effected a dramatic inhibition of nitrogenase activity. These results indicate that nitrogenase biosynthesis becomes insensitive to repression by ammonia as heterocysts mature and that ammonia or its metabolites act to regulate nitrogen fixation by inhibiting heterocyst differentiation and by inhibiting nitrogenase activity through competition with nitrogenase for reductant and/or ATP, but not by directly regulating nitrogenase biosynthesis in heterocysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call