Abstract

The time- and space-resolved emission profiles of LiI and LiII emission lines from the laser-blow-off plumes of a multilayered LiF–C thin film have been studied using spectroscopic technique. The evolution features were analyzed in different ambient environments ranging from high vacuum to 3mbars of argon pressures and at various fluences of the ablating laser. During the evolution of the plume, a transition region was found to exist between 4 and 6mm. Here, the plume dynamics changed from free expansion to collisional regime, where the plume experienced viscous force of the medium. The enhancement observed in neutral lines, in comparison with ionic lines, is explained in terms of the yield difference in electron impact excitation and ionization processes. Substantial difference in the arrival time distribution of the plume species was observed for LiI and LiII lines at high ambient pressures. Three expansion models are invoked to explain the evolution of the plume in different ambient conditions. The laser fluence was found to control the ratio of ions and neutrals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.