Abstract

alpha2-Macroglobulin (alpha2M) has been identified as a carrier protein for beta-amyloid (Abeta) decreasing fibril formation and affecting the neurotoxicity of this peptide. The alpha2-macroglobulin receptor/low density lipoprotein receptor related protein (LRP) is involved in the internalization and degradation of the alpha2M/Abeta complexes and its impairment has been reported to occur in Alzheimer's disease. Previous studies have shown alpha2M to determine an enhancement or a reduction of Abeta toxicity in different culture systems. In order to clarify the role of alpha2M in Abeta neurotoxicity, we challenged human neuroblastoma cell lines with activated alpha2M in combination with Abeta. Our results show that in neuroblastoma cells expressing high levels of LRP, the administration of activated alpha2M protects the cells from Abeta neurotoxicity. Conversely, when this receptor is not present alpha2M determines an increase in Abeta toxicity as evaluated by MTT and TUNEL assays. In LRP-negative cells transfected with the full-length human LRP, the addition of activated alpha2M resulted to be protective against Abeta-induced neurotoxicity. By means of recombinant proteins we ascribed the neurotoxic activity of alpha2M to its FP3 fragment which has been previously shown to bind and neutralize transforming growth factor-beta. These studies provide evidence for both a neuroprotective and neurotoxic role of alpha2M regulated by the expression of its receptor LRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.