Abstract

The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions.The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200°C for 2h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2h at 920°C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600°C maintaining a constant rate of 10°C/min. Results indicate clear transformation peaks in all the samples which are significantly high than conventionally reported except with the addition of Mg in which case no distinct peaks have been recorded. The range of martensite retention is the maximum in ternary Cu–Al–Mn alloys; addition of quaternary elements decreases this range significantly. Presence of Ni delays austenite formation and completion [As and Af] significantly as compared to the ternary alloys; whereas with other additions the As and Af temperatures are brought forward. This means that whereas the alloys without quaternary additions would be better suited for its shape memory properties, ternary alloys would be better suited for higher transition temperatures.The role of different alloying additions has been highlighted in the findings. Variations in properties have been attained due to different additions and improvements attained in terms of higher transformation temperatures and martensite formation due to the alloying additions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call