Abstract

A micromechanics based model has been developed to understand the effect of debonding of coarse aggregates from mortar on the macroscopic behavior of concrete under equibiaxial and uniaxial tension. Concrete is modeled as a two phase composite at the meso-scale. The interface is characterized by a bilinear cohesive law with softening. The elastic solutions of the stress and displacement fields due to the separation of the aggregate from the mortar matrix are computed at the meso-level. A homogenization scheme is implemented to obtain the overall behavior at the macro-scale. Factors such as aggregate size, aggregate content, elastic properties of the constituents and the interface properties are seen to affect the macroscopic response of concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.