Abstract
Early stages of hot-electron thermalization in small gold nanoparticles wrapped in an adsorbates shell have been investigated by femtosecond transient absorption spectroscopy. Type-I hot electrons thermalize in 800 fs (to form type-II hot electron) either by scattering with cold conduction band electrons or by chemical interface scattering with adsorbates shell. Type-II hot electrons redistribute the excess energy toward the lattice via electron–phonon coupling in 1.8–3.6 ps depending on pump fluence. The electron–phonon coupling process (type II hot electron) is retarded because of the incomplete internal thermalization of type-I hot electron at early times due to the presence of adsorbates. To cite this article: C. Bauer et al., C. R. Chimie 9 (2006).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.