Abstract

BackgroundThe purpose of this research was to study the gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), vascular endothelial growth factor A (VEGF-A) and adiponectin (AdipoQ) genes in the visceral (omental, mesenteric) and subcutaneous adipose tissue depots in metabolic syndrome (MS).We studied 23 women with MS, with a mean age of 50.7 ± 4.5 years and mean body mass index (BMI) of 45.6 ± 9.8 kg/m2. The control group included 10 women, with a mean age of 40.6 ± 8.7 years and normal BMI (22.3 ± 3.7 kg/m2). The gene expression levels in the omental (OAT), mesenteric (MAT) and subcutaneous (SAT) adipose tissues were assessed by quantitative real-time PCR.FindingsIncreased gene expression levels of IL-6 and TNF-α were detected in MAT in patients with MS, compared with the control group (p < 0.05 and p < 0.005, respectively). Significant positive correlations were observed between IL-6 mRNA expression levels in OAT and the content of CD14 + cells in the peripheral blood (r = 0.55, p < 0.05), as well as between NF-κB and VEGF-A mRNA levels in OAT (r = 0.43, p < 0.05) in patients with MS. The AdipoQ gene expression levels in OAT were significantly decreased in women with MS compared with the control group (p < 0.05). In addition, there were inverse correlations between AdipoQ gene levels in MAT and serum CRP levels (r = −0.63, p < 0.05), as well as between AdipoQ gene levels in MAT and serum IL-6 levels (r = −0.46, p < 0.05).ConclusionThese data demonstrate that proinflammatory gene expression of MAT in women with MS was increased compared with the control group. The AdipoQ gene expression levels in OAT were significantly decreased in women with MS compared with the control group.

Highlights

  • Significant differences exist between fat depots in relation to the complications associated with metabolic syndrome (MS)

  • These data demonstrate that proinflammatory gene expression of MAT in women with MS was increased compared with the control group

  • The calculation of relative gene expression in this software is Results A 3-fold decrease in AdipoQ gene expression levels in the OAT was observed in patients with MS compared with the control group (p < 0.05) (Figure 1)

Read more

Summary

Introduction

Significant differences exist between fat depots in relation to the complications associated with MS. The increased production of inflammation mediators in the adipose tissue, liver, pancreas and skeletal muscles causes subclinical metabolic inflammation [5,8,9]. This inflammation affects the metabolic and secretory function of adipose tissue and plays a leading role in the development of obesity accompanying MS, type 2 diabetes mellitus and atherosclerosis [10,11,12]. Metabolic inflammation involves cell infiltration, fibrosis development, impaired microcirculation, enhanced adipokines and proinflammatory cytokines in the VAT (visceral adipose tissue) and increased levels of non-specific inflammatory biomarkers, such as CRP (C-reactive protein), fibrinogen, and leukocytes in the blood [13,14,15]. The gene expression levels in the omental (OAT), mesenteric (MAT) and subcutaneous (SAT) adipose tissues were assessed by quantitative real-time PCR

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.