Abstract

When exposed to prolonged anoxia insects enter a reversible coma during which neural and muscular systems temporarily shut down. Nervous system shut down is a result of spreading depolarization throughout neurons and glial cells. Upon return to normoxia, recovery occurs following the restoration of ion gradients. However, there is a delay in the functional recovery of synaptic transmission following membrane repolarization. In mammals, the build-up of extracellular adenosine following spreading depolarization contributes to this delay. Adenosine accumulation is a marker of metabolic stress and it has many downstream effects through the activation of adenosine receptors, including the inhibition of cAMP production. Here we demonstrate that adenosine lengthens the time to functional recovery following anoxic coma in locusts. Caffeine, used as an adenosine receptor antagonist, decreased the time to recovery in intact animals and lengthened the time to recovery in semi-intact animals. A cAMP inhibitor, NKH 477, delayed recovery time in male animals. Our results show that the rate of recovery in insect systems is affected by the presence of adenosine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call